Айниятро исбот намоед: \(\sin{4\alpha}-\sin{5\alpha}-\sin{6\alpha}+\sin{7\alpha}=-4\sin{\frac{\alpha}{2}}\sin{\alpha}\sin{\frac{11\alpha}{2}}\)
- Информация о материале
- Автор: Раҳимҷон Ҳакимов
- Категория: Тригонометрия
- Просмотров: 651
Айниятро исбот намоед:
\(\sin{4\alpha}-\sin{5\alpha}-\sin{6\alpha}+\sin{7\alpha}=-4\sin{\frac{\alpha}{2}}\sin{\alpha}\sin{\frac{11\alpha}{2}}\)
\(\sin{4\alpha}-\sin{6\alpha}=2\cos{\frac{4+6\alpha}{2}}\sin{\frac{4-6\alpha}{2}}=-2\cos{5\alpha}\sin{\alpha}\)
\(\sin{7\alpha}-\sin{5\alpha}=2\cos{\frac{7+5\alpha}{2}}\sin{\frac{7-5\alpha}{2}}=2\cos{6\alpha}\sin{\alpha}\)
\(\sin{4\alpha}-\sin{5\alpha}-\sin{6\alpha}+\sin{7\alpha}=2\cos{6\alpha}\sin{\alpha}-2\cos{5\alpha}\sin{\alpha}=\)
\(=2\sin{\alpha}(\cos{6\alpha}-\cos{5\alpha})\)
\(\cos{6\alpha}-\cos{5\alpha}=-2\sin{\frac{6+5\alpha}{2}}\sin{\frac{6-5\alpha}{2}}=-2\sin{\frac{11\alpha}{2}}\sin{\frac{\alpha}{2}}\)
\(\sin{4\alpha}-\sin{5\alpha}-\sin{6\alpha}+\sin{7\alpha}=-2\sin{\frac{11\alpha}{2}}\sin{\frac{\alpha}{2}}\cdot2\sin{\alpha}=\)
\(=-4\sin{\frac{\alpha}{2}}\sin{\alpha}\sin{\frac{11\alpha}{2}}\)
\(\sin{4\alpha}-\sin{5\alpha}-\sin{6\alpha}+\sin{7\alpha}=-4\sin{\frac{\alpha}{2}}\sin{\alpha}\sin{\frac{11\alpha}{2}}\)
Айният исбот шуд.
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)